2024 1EEE 23rd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) | 979-8-3315-0620-9/24/$31.00 ©2024 IEEE | DOI: 10.1109/TrustCom63139.2024.00048

2024 IEEE 23rd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

Behavior Speaks Louder: Rethinking Malware
Analysis Beyond Family Classification

Fei Zhang', Xiaohong Lif, Sen Chen', Ruitao FENG*
fCollege of Intelligence and Computing, Tianjin University, Tianjin, China
{zhangfei, xiaohongli, senchen} @tju.edu.cn
*Faculty of Science and Engineering, Southern Cross University, Australia
ruitao.feng @scu.edu.au

Abstract—The classification of malicious families is essential
in Android malware analysis. However, inconsistent naming
standards across different antivirus companies hinder accurate
identification and understanding of malicious behaviors. This
study conducts an extensive analysis of Android malware families
to address these challenges. First, we compared family definitions
from various antivirus companies and found significant incon-
sistencies in the level of detail and descriptions of malicious
behaviors. These inconsistencies undermine effective malware
classification and analysis. Second, we assessed the alignment
between described and exhibited malicious behaviors, revealing
that family definitions often provide only a broad outline,
omitting critical details. Additionally, evolving malware behaviors
often surpass existing family definitions. To address these issues,
we propose using specific behavior labels to directly indicate
malicious behaviors in malware attack chains. Leveraging large
language models (LLMs) and a detailed analysis of Android
malicious behaviors, we identified six key behavior labels. To
streamline the labeling process, we designed the AMBL frame-
work, which automates the generation of behavior labels for
malware. Our novel feedback mechanism-based LLM analysis
method establishes relationships between APIs and behavior
labels, crucial for accurate label updating. Through AMBL, a
dataset with behavior analysis reports has been outputed and
open sourced. An online survey and manual analysis are also
conducted to validate the effectiveness of the AMBL framework
and the reliability of the dataset.

Index Terms—Android malware, family definitions, malicious
behaviors

I. INTRODUCTION

Currently, Android is the most popular operating system in
the world, with the number of apps on Google Play reaching
2.4 million [1]. However, the openness and flexibility that
make Android so appealing to users and developers also render
it a prime target for malicious actors. Alarmingly, the number
of Android malware instances has surged from 22,000 in
2012 to 33 million by Jan 2023 [2]. This sharp increase
in malware poses significant challenges to effective malware
mitigation, underscoring the growing importance of robust
Android malware detection.

Current research on Android malware primarily focuses
on three areas: binary classification [3]-[6], family classifi-

This research was supported by the National Natural Science Foundation
of China (No.62332005).
* The corresponding author is Ruitao FENG.

cation [7]-[9], and behavior classification [10]. Binary clas-
sification [3] aims to determine whether an app is benign or
malicious and has achieved a great performance. However,
these models often function as black boxes, providing little
insight into the specific malicious behaviors of the malware
or the attack chain. Understanding these behaviors is crucial
for enhancing detection techniques and remediation efforts.
Family classification [7] categorizes malware into specific
families to facilitate behavioral analysis. Researchers can use
the classification results to dig into subsequent malicious be-
haviors, analyze attack chains, and devise defensive measures.
Effective analysis requires @ Fast response: Quickly retrieving
family definitions based on family names; @ Behavioral logic:
Understanding the specific behavioral logic of malware; ©
Complete behaviors: Encompassing all malicious behaviors
within family definitions.

To explore whether the current family definitions meet these
criteria, we conducted a study from two perspectives (as shown
in Figure 1).

- Definition Comparison: We collected 139 Android malware
family definitions from two antivirus (AV) companies to
assess consistency. This involved examining the uniformity
of definitions for the same family across different AV
companies and identifying overlaps or duplications in family
definitions.

- Behavior Comparison: We developed an automated frame-
work to extract malicious behaviors from malware and
compared them with those specified in their family def-
initions. This analysis aimed to determine the accuracy
and comprehensiveness of family definitions in identifying
malicious behaviors.

We have identified the following shortcomings in family
definitions:

- Inconsistency & Overlap: Different AV companies have
varying definitions for the same malware family, with in-
stances of duplication in family naming and definitions
complicating the retrieval of accurate family definitions.

- Broader Definition: Some malware families have overly
broad behavior descriptions, hindering the understanding of
specific behavioral logic.

- Beyond Definition: The iterative nature of malware evolu-

2324-9013/24/$31.00 ©2024 IEEE 165
DOI 10.1109/TrustCom63139.2024.00048
Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

&— &
> E Family | Family Il Family Ill
E E Definition | | [Definition Il Similar
é % G.CHECK POINT malg@iia definitions
_ (in)consistency among overlap among varied
varied AV provider families
§ - Malware’s @ Family’s
=5 Behaviors = iti A
2 -g | Definition 'ﬁ‘
& "9 | Definition is broader Behaviors are
= R than behaviors. beyond definition.

Fig. 1: Two Perspectives of the Study

tion leads to behaviors beyond the scope of family defini-
tions, obstructing comprehensive attack chain analysis.

Unlike family classification, behavior classification [10]
seeks to directly label malicious behaviors of malware. This
approach, however, faces challenges due to the lack of stan-
dardized behavior labels and the evolving nature of malware,
which necessitates continuous updates to the behavior labels.
In this paper, we propose using multiple behavior labels to
directly indicate all malicious behaviors of malware. This
type of approach allows for updating labels as new malicious
behaviors emerge. However, we face several challenges:

- Lack of Standards: There is no formal universal standard
for categorizing specific malware behaviors, making the
summarization of comprehensive behavior labels challeng-
ing.

- Manual Annotation Costs: While Android malware
datasets exist, annotating them with precise behavior labels
at the program level is prohibitively expensive.

In this paper, to ensure the effectiveness of malicious
behavior labels, we first summarized six malicious behavior
labels based on dangerous permissions and sensitive APIs with
the assistance of large language models (LLMs). Additionally,
we constructed a novel prompt template for LLM to establish
the relationships between APIs and labels. We designed the
Automated Malicious Behavior Labeling (AMBL) framework,
which integrates various sources of information such as the of-
ficial Android API documentation, malware behavior analysis
reports, and static program analysis results. This framework
enables the direct addition of behavior labels to malicious
apps, thus reducing the need for costly manual labeling. Fi-
nally, we utilized this framework to establish a dataset contain-
ing 1,000 samples of malware, which we made open-source for
the research community. We also conducted an online survey
to evaluate whether the malicious behavior labels generated
by AMBL can accurately and comprehensively represent the
malicious behaviors of malware. The results collected online
confirmed the effectiveness of the malicious behavior labels.
Additionally, we manually analyzed the complete attack chains
of certain malware samples in the dataset to verify the accuracy
and completeness of the labels, ensuring the quality of the
dataset.

In summary, we make the following main contributions:

166

o Comprehensive Study: This is the first work to system-
atically identify imperfections in current malware family
definitions, providing detailed analyses with examples and
statistical results.

« Malicious Labels: We summarize six malicious labels that
represent various aspects of malicious behaviors based on
extensive pre-understanding of malware analysis.

« AMBL Framework: We implement a framework that auto-
matically generates behavior labels for malware, providing
extensive information about malware, including permis-
sions, intents, APIs, function call graphs, and malicious
labels.

« Open-Source Dataset: We generate comprehensive mali-
cious analysis reports for 1,000 malware, making the dataset
open-source ! for further research and application by the
community.

II. RELATED WORK

ML-based methods [11]-[14] have been widely applied in
the field of security, among which ML-based Android malware
detection can be broadly categorized into binary classification
and family classification. For binary classification, numerous
studies have achieved remarkable detection results [6], [15]—
[18]. For instance, Yerima et al. [15] proposed a method
based on a Bayesian classification model using APIs, system
commands, and permissions to detect Android malware. Wu
et al. [18] utilized data flow APIs as classification features for
Android malware detection. However, due to the black-box
nature of machine learning-based classification methods, bi-
nary classification results can not aid researchers in analyzing
the attack chain of malware in detail.

Family classification has been considered an effective
method for further malware analysis [7]-[9]. M. Fan et al. [7]
constructed frequent subgraphs to represent common behaviors
of malware within the same family, improving classification
accuracy. Y. Bai et al. [8] applied Siamese networks to mal-
ware family classification, showing innovative progress in this
field. Despite the widespread use of family classification, our
survey found inconsistencies in naming and defining malware
families among AV companies. This inconsistency can hinder
rapid response to malware threats. Additionally, continuous
updates in malware can lead to behaviors that exceed existing
family definitions.

Inspired by advancements in program analysis [19]-[22],
some researchers [10], [23]-[25] have initiated efforts to
directly identify malicious behaviors at the program level.
R. Feng et al. [24] summarized four fine-grained malicious
behaviors to describe malicious behaviors of IoT malware
comprehensively. Q. Qiao et al. [10] generated malicious
behavior labels from detailed analysis reports of malware
and identified malicious behaviors. However, the behavioral
labels of the analyzed malware are highly imbalanced in this
paper, which raises concerns among researchers regarding the
generality of these behavioral labels.

Uhttps://github.com/Behavior-speaks-loader/Behavior-speaks-loader

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

Our work, through a comprehensive study, systematically
illustrates the limitations of malware family classifications,
thereby proposing the use of multiple behavioral labels to
directly identify the malicious activities of malware. We have
designed the AMBL framework to explicitly assign behavioral
labels to malware, and ultimately, we have open-sourced a
dataset with detailed labels for further research by academia
and industry.

III. EMPIRICAL STUDY

In order to comprehensively understand the shortcomings
of using family definitions for malware analysis, we conduct
an empirical study from two perspectives: the consistency
of malicious family definitions by contrasting definitions
provided by different vendors, and the relationship between
the malicious behaviors exhibited by malware and their cor-
responding family definitions, therefore, providing insights
into the severity of the obstacles to analysis in the current
ecosystem.

A. Comparison of Family Definitions

The lack of standardized protocols governing the naming
and definition of malware families by security vendors poses
a significant challenge in the field. Through an investigation
of public malware family information [26], it becomes evident
that security vendors define malware families according to
their own criteria, leading to a proliferation of families with
varying and often inadequate definitions. In light of this, our
study aims to compare the definitions of malware families
provided by two major security vendors, Malpedia and Check-
Point, to shed light on the consistency and overlap in these
definitions.

To conduct this comparison, we attempted to scrape Android
malware family information from various major AV compa-
nies. However, considering the authority of the sources and
the access limitations of web scraping, we ultimately selected
family definitions provided by Malpedia [27], which houses
information on 72 Android malware families, and CheckPoint
[28], which catalogs 67 Android malware families.

1) Consistency in Definitions of Malware Families: By
comparing the family definitions collected from Malpedia and
CheckPoint, We found the existence of malicious families
defined by both AV companies. To assess the consistency of
definitions for the same malicious families across different se-
curity vendors, we conducted a comparative analysis focusing
on 16 common malicious families found in both Malpedia and
CheckPoint databases. Our analysis aimed to identify varia-
tions in definitions, particularly in terms of covered malicious
behaviors and granularity.

We observed notable discrepancies in the definitions pro-
vided by different security vendors for the same malicious
families. For instance, in the case of the SharkBot family,
CheckPoint includes anti-analysis malicious behaviors such as
sandbox evasion, whereas Malpedia does not. This discrepancy
is illustrated in the upper part of Figure 2. Furthermore,

167

variations in the granularity of describing malicious behav-
iors were evident. For example, while Malpedia identifies
Catelites as a banking Trojan that steals banking credentials,
CheckPoint provides a more detailed description, including
creating fake icons, sending fake system notifications, re-
authenticating with Google Services, and soliciting credit
card details. This discrepancy is illustrated in the middle
of Figure 2. Table I summarizes the findings for the 16
malicious families, indicating differences in the mentioned
malicious behaviors and granularity of descriptions. Notably, 4
families (AndroRat, SharkBot, FlyTrap, and AhMyth) exhibit
differences in malicious behaviors, while 9 families (Catelites,
FurBall, Gustuff, etc.) show variations in granularity.

Our research suggests that while identifying the malicious
software belonging to a particular family is straightforward,
determining the exact definition of that family based solely
on its name is challenging. We speculate that discrepancies
in definitions between security vendors may arise from efforts
to summarize malicious behaviors to expedite identification,
potentially introducing biases.

TABLE I: Definition Comparison of Same Families

Different
granularity
v
v

Different
behaviors

Same

Family definition

Catelites
FurBall
Joker
Gustuff
AndroRat
Fakecalls
Eventbot
LokiBot
Anubis
SharkBot
FluBot
Medusa
FlyTrap
Cerberus
FaceStealer
AhMyth

v

ANEEENENENENENEN

Conclusion #1: The variation in how security vendors define
malicious families highlights the difficulty in standardization,
emphasizing the necessity for more research. Inconsistencies exist
among providers in both the depth of descriptions and the identi-
fied malicious behaviors.

2) Overlap in Definitions of Malware Families: The anal-
ysis of family definitions provided by the CheckPoint secu-
rity vendor revealed significant overlap in definitions across
multiple families. Notably, families such as Lezok and Hum-
mer exhibited identical malicious behaviors, involving the
download of other malicious software onto infected devices
and subsequent display of advertisements. To investigate the
uniqueness of family definitions further, we conducted a
comparative analysis between definitions from two major AV
companies, Malpedia and CheckPoint.

Manual identification of semantically similar pairs of fam-
ilies from numerous definitions proved to be highly time-
consuming and impractical, requiring comparisons across

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

Varied malicious behaviors in the same family’s definitions from different providers.

SharkBot steals credentials and banking information on Android

SharkBot is a piece of malicious software targeting Android

mobile devices. Sharkbot lures victims to enter their credentials
in windows that mimic benign credential input forms. Evasion
techniques are also a part of Sharkbot. If the malware detects it is
running in a sandbox, it stopsALhe execution and quits.

mobile devices. It is designed to obtain anll misus financial
data by redirecting and stealthily initiating money transfers.
SharkBot is particularly active in Europe, but its activity has

|@ cHeck POINT

also been detected in the United States. §
» missing mal@dla

Varied granularity of behavioral descriptions in the same family’s definitions from different providers.

Catelites is a variant of CronBot that targets

Catelites is an Android trojan. Once the malicious app is installed, attackers

Android devices, and designed to steal payment
cards data and bank account login credentials.

use social engineering tricks and window overlays to get credit card details
from the victim. The distribution vector seems to be fake apps from third-

Catelites Bot is being dropped onto the victim's
device after downloading an app from a third- *__Ai

party app store, a mdlmous adware or phishing é e systen
|
sites. -8

| *
& check poINT

X-

; —»pally app stores or via malvertisement . After installation, the app c

ogle I 1e icons. Furthermore, the malware
catic tellmg the victim that they need to re-
and as to be entered.

s

Families with varied names but highly similar definitions.

LeZok is an Android Trojan that downloads gdditional malware

y . .
Hummer is an Android adware that generates revenue

to victims’ devices without the user's consent, as well as
generates popup*advelmemems when the user surfs the internet.

through downloading applicalioﬁs to infected mobile
platforms and displayingAadvertisements.

Ie CHECK POINT G.CHECK POINT
Fig. 2: Three Examples of Family Definition Comparison
4,392 pairs of family definitions. To address this challenge, e)
we leveraged the semantic understanding capabilities of mod- ? pairs of
. . lssnmllar@
ern large language models (LLMs), specifically utilizing 508 . 704 definitions
three open-source models: Llama 3 [29], Gemma [30] and ! 23 G
Llava [31]. By constructing and using appropriate prompts, Family pair Mmoo .. anual
these models assisted in identifying semantically similar pairs (AJ;B) Y o echeck
of family definitions (Technical implementation details in 370
semantic Llava 22 pairs of similar

Appendix A.1 [32]).

The results, as depicted in Figure 3, revealed substantial
overlap in definitions, with Llama 3 identifying 837 similar
pairs, Gemma identifying 1,095 pairs, and Llava identifying
637 pairs. Notably, 42 pairs were identified as similar by
all three models. To ensure the accuracy of the findings, we
conducted manual verification of family pairs identified as
similar by all three models, ultimately confirming 22 pairs
of similar family definitions. The root cause of this overlap
and redundancy in definitions lies in the absence of a unified
protocol to regulate naming and definitions among security
vendors. Consequently, each security provider strives to es-
tablish a comprehensive family classification system, leading
to the proliferation of families and redundancy in definitions.

Conclusion #2: The observed overlap in family definitions under-
scores the need for standardization. The lack of a unified protocol
has led to the repetition of definitions for similar malicious
behaviors.

B. Comparison of Malicious Behaviors

The inconsistency in family definitions ultimately leads to
insufficient descriptions of malicious behaviors exhibited by
the malware. To further investigate the performance of mali-
cious families in describing malicious behaviors of malware,
we conducted a comparative study between the behaviors

168

definitions

Fig. 3: Families with Varied Names but Similar Definitions

included in family definitions and those possessed by the
malware itself.

1) Data Preparation: We employed the Drebin dataset, a
widely used resource for Android malware analysis, containing
5,560 malicious applications from 179 malware families. By
analyzing the number of malware in Drebin’s malicious fam-
ilies, we found that the number of malware in each family in
Drebin is very unbalanced; for example, the malware number
of one family, fakeinst, reaches 805, while there are 39 families
in Drebin that have a malware number of 1, and 25 families
with a malware number of 2.

To focus our analysis on relevant families and malware,
we filtered out 51 malicious families from the Drebin dataset
that had more than 10 malware. From this subset, we started
with the family names provided by Drebin and looked up
common AV companies to see if there were definitions for the
corresponding family. However, since there is no way to know
which AV company originally defined the family, it is non-
trivial to get a large number of authoritative family definitions

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

Malware’s behaviors:

Too broad
for analysis

public static int GetRequest(...) {

public void onReceive(...) {

arrayOfSmsM [i] = SmsM,
createFromPdu((byte[])arrayOfObject[i]);

String str = Link Antivirus()+paramString;
URLConnection uRLConnection =
uRL.openConnection();

public static String LinkAntivirus() {
return ‘http://routin***** com/z.php’

Fig. 4: A Malware of Broader Definition. Leaking bank
credentials by sending incoming SMS to a remote URL is
much finer-grained than the definition of its family.

based on the family names.

We obtained definitions for 34 families from F-Secure [33]
(We have explained the reasons for choosing F-secure in
Appendix A.2 of [32]), which served as the basis for our
analysis.

Based on the detailed malicious behaviors outlined in these
family definitions, we summarized behavior labels to provide
a concise representation. For example, for the “Batterydoctor”
malware family, described as “This trojan masquerades as
Android Battery Doctor. Upon execution, it silently forwards
information about the device to a remote location. At the same
time, it tries to advertisements to display on the device”, we
assigned behavior labels such as “Disguise-Itself,” “Ad,” and
“Info-Steal.” These behavior labels allow for easy comparison
with the behaviors exhibited by malicious applications while
retaining essential information from the family definitions.

Furthermore, we conducted an automated analysis of the
4,536 malicious applications belonging to the 34 selected
malware families leveraging AMBL (details in § IV-B). The
analysis process, as illustrated in Figure 6, comprises three
main parts:

- Acquisition of Malicious Behaviors Mapped APIs: Es-
tablishing the correspondence between malicious behaviors
obtained from VirusTotal [34] and APIs.

- Acquisition of Label-related Sensitive APIs: Identifying
the association between each behavior label defined by us
and the related APIs.

- Acquisition of Malicious Labels: Generating malware la-
bels for each malware using the obtained Malicious Behav-
iors Mapped APIs and Label-related Sensitive APIs.
Consequently, we conducted a thorough examination of

the behaviors manifested by the malicious applications in
contrast to the behavior labels attributed to their corresponding
families. This examination culminated in the identification of
two primary issues, which will be elucidated in the subsequent
sections.

2) Broader Definition: Upon comparing the behaviors out-
lined in family definitions with those observed in malicious
applications, we identified instances where certain definitions
of malicious families were overly generalized. While the
purpose of the malware was implied in the family definition,

169

TABLE II: Comparison of Definitions and Malware’s Behav-

iors
Family name Total Beypr}d Broz}dgr Same_as
number definition definition behavior
Nandrobox 13 13 (100%) 13 (100%) 0 (0%)
Kmin 145 145 (100%) 145 (100%) 0 (0%)
Fakeapp 42 42 (100%) 42 (100%) 0 (0%)
Mobilespy 14 14 (100%) 14 (100%) 0 (0%)
Pjapps 54 54 (100%) 27 (50%) 0 (0%)
Fakenotify 63 63 (100%) 0 (0%) 0 (0%)
Faketimer 12 12 (100%) 0 (0%) 0 (0%)
Droidsheep 11 11 (100%) 0 (0%) 0 (0%)
Penetho 17 17 (100%) 0 (0%) 0 (0%)
Ginmaster 344 344 (100%) 0 (0%) 0 (0%)
Faketimer 12 12 (100%) 0 (0%) 0 (0%)
Yzhc 37 37 (100%) 0 (0%) 0 (0%)
Batterydoctor | 130 126 (96.9%) 130 (100%) 0 (0%)
Plankton 632 600 (94.9%) 632 (100%) 0 (0%)
Vdloader 16 15 (93.8%) 16 (100%) 0 (0%)
Fakeangry 12 4 (33.3%) 12 (100%) 0 (0%)
Zitmo 14 3 (21.4%) 14 (100%) 0 (0%)
Spirmo 11 0 (0%) 11 (100%) 0 (0%)
Spyhasb 13 0 (0%) 13 (100%) 0 (0%)
Mobiletx 68 0 (0%) 0 (0%) 68 (100%)
Fakeplayer 17 0 (0%) 0 (0%) 17 (100%)
Droidkungfu 659 491 (74.5%) 655 (99.4%) 2 (0.3%)
Golddream 68 64 (94.1%) 64 (94.1%) 3 (4.4%)
Hipposms 16 15 (93.8%) 0 (0%) 1 (6.2%)
Lotoor 59 58 (98.3%) 0 (0%) 1 (1.7%)
Basebridge 326 82 (25.2%) 322 (98.8%) 2 (0.6%)
Boxer 150 36 (24%) 0 (0%) 114 (76%)
Fakeinst 805 191 (23.7%) 0 (0%) 614 (76.3%)
Lovetrap 11 8 (72.7%) 1 (9.1%) 3 (27.3%)
Iconosys 152 111 (73%) 15 (9.9%) 41 (27%)
Smsreg 20 18 (90%) 0 (0%) 2 (10%)
opfake 543 147 (27.1%) 0 (0%) 396 (72.9%)
Fakelogo 20 1 (5%) 0 (0%) 19 (95%)
Jifake 26 11 (42.3%) 0 (0%) 15 (57.7%)
Geinimi 16 14 (87.5%) 1 (6.3%) 2 (12.5%)
Total 4536 2747(60.6%) | 2127(46.9%) | 1300(28.7%)

TABLE III: Correspondence Table for Fine Granularity Be-
havior

Family definition
Bank [35]

Fine granularity behavior
SMS, Phone, Network

Advertisement [36] Network
Steal user info [37] File, Network
Control of device [38] Overstep

Execute remote commands [39] | Overstep, Network

specific malicious behaviors were not explicitly articulated. In
such cases, we categorized the malware as broadly defined
by its family. For example, the definition of the Zitmo family
states, ‘“Zitmo harvests banking related information sent from
bank to the user’s device.” While this conveys the intent of the
malware family to steal banking-related information, it lacks
specificity regarding the exact malicious behaviors involved
in executing this attack. As illustrated in Figure 4, the attack
chain of the malware “Criptomovil”, belonging to the Zitmo,
involves more detailed behaviors such as retrieving received
SMS messages and transmitting them to a remote server.
Given the impracticality of manually analyzing a large
volume of malicious applications and their families, we sought
to automate the process of determining whether malware

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

is broadly defined by its family. Initially, through extensive
examination of numerous malicious family definitions, we
identified five primary types of broad malicious behaviors:
Bank, Advertisement, Steal user info, Control of device, and
Execute remote commands. Subsequently, by thoroughly inves-
tigating the specific fine-grained malicious behaviors required
to achieve these broad objectives [35]-[39] (The details are
introduced in Appendix A.3 [32]), we established rules for
Broader Definition, as outlined in Table III. These rules
offer a more nuanced perspective on the malicious behaviors
necessary to fulfill common broad attack objectives specified
in family definitions.

If a family definition only provides broad descriptions
of behaviors without detailed granularity, yet the associated
malware exhibits corresponding fine-grained behaviors, we
classify the malware as broadly defined. Leveraging the rules
delineated in Table III, we conducted an automated analysis
of malware in the Drebin dataset. As depicted in Table II,
behaviors of 2,127 malicious applications (comprising 46.9%
of the dataset) were broadly defined by their respective fam-
ilies. Notably, all malicious applications from 11 families
were broadly defined, while none from 16 families exhib-
ited Broader Definition. This underscores the importance of
well-defined and detailed family definitions in mitigating the
occurrence of Broader Definition.

Conclusion #3: The study reveals inconsistencies in the gran-
ularity of malicious family definitions, particularly in their ten-
dency towards Broader Definition. This lack of specificity impedes
researchers’ ability to dissect precise behavioral nuances within
malware.

3) Beyond Definition: Family definitions, in addition to
Broader Definition, sometimes fail to fully encompass the
malicious behaviors exhibited by individual malware, namely
Beyond Definition. For example, as shown in Listing 1,
the BatteryDoctor family definition includes behaviors like
collecting user and device information and displaying adver-
tisements. However, the malware “Cache Remover” within this
family also engages in additional behaviors, such as sending
SMS and accessing location information, which are not cov-
ered by the family definition. These behaviors, highlighted in
red, indicate potential blind spots in detection and analysis.

To systematically investigate whether the malicious behav-
iors of malware extend beyond their family definitions, we
utilized an automated method. If a malicious application’s
behaviors were neither explicitly stated nor implied by the
family definition (as discussed in § III-B2), we classified them
as exceeding the family definition. The findings, summarized
in Table II, reveal that 2,747 malware samples (60.6% of the
dataset) exhibited behaviors beyond those defined by their
families. Notably, all malicious applications from 11 families
displayed behaviors exceeding their respective definitions.
These results underscore the limitations of current family
definitions in capturing the full range of malicious behaviors,
highlighting the need for more comprehensive and detailed
definitions to improve detection and analysis.

android.permission. INTERNET

3 | android.permission.READ_CONTACTS

i | android.permission.READ_SMS

5 | android.permission. WRITE_SMS

6 | android.permission.SEND_SMS

android.permission. ACCESS_COARSE_LOCATION
8 | android.permission. ACCESS_FINE_LOCATION

11| private String getDeviceld(Context context)

12| public String getSale_amount()

13| private String getMyPhoneNumber(Context context)
14| public String getBrand_id ()

15| private String getContactNumbers ()

17| private boolean is_online()
18| private String buildLink () {

20 temp = ‘‘http://” + this.brand_id + °°.” + getDomain()
+ ‘‘/serve?sdk=android&action=" + this.action +

“&advertiser_id=" + this.brand_id + ‘‘&key=" + ... + this.
URLEnc. bytesToHex (this .URLEnc. encrypt(data));

23| public static void showUpgradeNotification(String paramString)

2% | public boolean update_variables(long updatetime) {
28 LocationManager Im = (LocationManager)this.context.

getSystemService (‘“location”);
29 Location location = Im.getLastKnownLocation(*“gps”);

31 }
public void onReceive(String m) {

SmsManager smsManager = SmsManager.getDefault();
36 smsManager.sendTextMessage(this.phone_number, null, message, null, null);

2

Listing 1: A Malware of Beyond Definition. In addition to
possessing the malicious behaviors described by its family (in
blue), the malware also acquires the user’s latest location and
sends SMS (in red), which is beyond the definition.

Conclusion #4: As malware evolves, it often exhibits behaviors
beyond those specified in existing family definitions, complicating
the task of security analysts to fully understand and mitigate the
attack chain.

IV. METHODOLOGY

To address the identified issues, we propose a novel method-
ology of directly indicating malicious behaviors with behavior
labels. By reviewing real-world malware implementation and
family definitions, we summarized six types of general pro-
gram behaviors (labels) associated with malicious behaviors.
To mitigate the high cost of manual annotation, we imple-
mented an Automated Malicious Behavior Labeling frame-
work (AMBL). Considering the emerging malicious behaviors,
we designed a novel prompting method leveraging LLM to
keep the Label Related Sensitive APIs updated.

A. Malicious Behavior Labels

1) Malicious Label Summary: The lack of a universal
standard for classifying specific malware behaviors poses

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

Scrap Dangerous
Permission

Sensitive API
Acquisition

Sensitive Features Acquisition

') ChatGPT analysis

Manual summary

Malicious Behavior
Label Summary

develop

Research
papers

Sensitive
Features

Malicious
Labels

Fig. 5: The Workflow of Malicious Label Summary

significant challenges in malware analysis. Manually summa-
rizing the vast range of malicious behaviors from numerous
malware features is particularly arduous. To address this, we
utilized large language models (LLMs) known for their robust
summarization capabilities [40]. For the initial summarization
of labels, our approach, illustrated in Figure 5, involves a
method leveraging ChatGPT [41], which consists of two steps:
sensitive features acquisition and malicious behavior label
summarization.

a) Sensitive Feature Acquisition: The official Android
development documentation provides the protected level for
each permission. Permissions classified as dangerous often
represent significant risks to user privacy and the operation of
other applications. So, the 60 dangerous permissions defined
by Android development documentation are used as part of
sensitive features. Additionally, we compiled 193 sensitive
APIs identified from existing research [10], [42], [43]. These
permissions and APIs formed the basis of our sensitive feature
set.

b) Malicious Behavior Label Summarization: Utilizing
ChatGPT, we analyzed sensitive features to generate malicious
behavior labels covering diverse malicious behaviors (refer
to Appendix A.4 [32]). ChatGPT suggested ten labels: SMS
Manipulation, Call Manipulation, Location Tracking, Device
Data Retrieval, File System Access, Network Communication,
User Data Access, System Modification, Security Bypass,
and Application Control. Despite overlaps in some behaviors,
ensuring label uniqueness (as required by Rule #1 in § IV-A3)
led us to refine and summarize them. Behaviors like Device
Data Retrieval, File System Access, and User Data Access
aimed at accessing sensitive information were grouped as File-
related. Additionally, System Modification, Security Bypass,
and Application Control, Requiring Robust Permissions, were
classified as Overstep-related. To achieve uniformity, we re-
named the remaining labels without altering their meanings.
Thus, the final six labels are: SMS-related, Phone-related,
Location-related, File-related, Network-related, and Overstep-
related.

2) Definition of Malicious Label: We have introduced here
which specific malicious behaviors are associated with the 6
obtained labels respectively.

- SMS-related behaviors exploit SMS services for various
attacks, such as privacy breaches and fraudulent subscrip-
tions. Examples include transmitting personal data to remote
servers, intercepting verification codes for authentication
bypass, and secretly subscribing to premium services. Addi-

171

tionally, they can carry out control commands from remote
servers and delete unread messages.

- Phone-related behaviors target telephone services, lead-
ing to privacy breaches and financial losses. They involve
stealing user phone-related data like call logs and contacts
and monitoring incoming and outgoing calls. For instance,
ransomware may restrict victims to answering calls only to
the infected device.

- Location-related behaviors leak user location information
to remote servers, often for location-based attacks. Malware
can also manipulate user location information through re-
mote commands to facilitate further attacks.

- File-related behaviors involve accessing the device’s file
system, compromising user privacy. Malware can unautho-
rizedly access private files like photos and videos, trans-
ferring them to remote servers for extortion. Additionally,
it may automatically download files, potentially creating
backdoors for attacks.

- Network-related behaviors transmit user data from infected
devices to remote servers through network connections.
They can also receive control commands from remote
servers to execute further malicious actions.

- Overstep-related behaviors bypass permission verification
mechanisms, elevate privileges, and gain root access to the
device. This enables the execution of commands that further
compromise the device or user privacy.

3) Common Rules for Malicious Label: 1t is important to
note that the labels defined in our study are derived from
existing knowledge of dangerous permissions and sensitive
APIs. As the malware continues to develop, additional mali-
cious labels may be necessary to encompass newly identified
malicious behaviors in the future. To address this, we have
established the following three rules that need to be satisfied
when defining malicious labels.

- Rule #1: The malicious behaviors represented by each label
should be distinctive and that there should be no overlap
between different labels

- Rule #2: All malicious behaviors exhibited by current
malware can be captured by the defined labels.

- Rule #3: Each malicious label assigned to malware accu-
rately reflects its malicious behavior and is not redundant.

B. AMBL Framework Construction

To address the high cost associated with manual annotation,
we designed and open-sourced AMBL, which can automate
the annotation of malicious labels and present a report con-
taining comprehensive information adopted to determine the
labels, which could be used in Android malware detection,
such as training an ML-based detector.

As shown in Figure 6, with the help of the static analysis
tool AndroGuard [44], we can obtain the static information
(permissions, APIs, intents and CFG) of the malware (the
implementation details can be referenced from the source
code in the AMBL repository). Then the process of AMBL
can be mainly divided into four steps: (1) Acquisition of

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

|ﬁ| APK stati lysi 1
g static analysis
Malware
N Malwar 1. Malicious
Serap [atware > D behaviors
f&‘)\ . behavior report | APIs
&4 ju!
Antivirus Crapl Label related
rovider PN Behavior-API @ dangerous
P Mine — match permissi
: ™ JPScout
—» .
develop Analysis @ Dang.er(.)us Dz' Label related
permission T sensitive APIs

/
3

i 4. Malware @ ()

! >

i

report -
P Permission API Function

call graph

Fig. 6: An Overview of Automated Malicious Behavior
Labeling Framework

Malicious behaviors mapped APIs, (2) Acquisition of Label
related sensitive APIs, (3) Acquisition of Malicious Label and
the output part, (4) Acquisition of Malware Report.

1) Acquisition of Malicious Behaviors Mapped APIs: In
order to determine which API nodes in the malware’s FCG are
related to the malicious behaviors, we start with the official
Android development documentation and malware behavior
analysis reports to obtain the correspondence between the
malicious behaviors and the used sensitive features, such as
APIs. We first crawled behavior analysis reports of 1,000
malware from VirusTotal and discovered a total of 87 ma-
licious behaviors. For each malicious behavior, we searched
for keywords related to the behavior in the official Android
development documentation and, upon manual confirmation,
identified one or more APIs corresponding to the malicious
behavior. Finally, the APIs mapped to each of the 87 identified
malicious behaviors are compiled as the Malicious Behaviors
Mapped APIs. With the assistance of Malicious Behaviors
Mapped APIs, we can swiftly pinpoint crucial API nodes
associated with malicious behaviors in the FCG of the malware
based on the behavior analysis report.

2) Acquisition of Label Related Sensitive APIs: Label Re-
lated Sensitive APIs accounts for which sensitive APIs are
associated with the pre-define malicious behavior labels. We
obtain all dangerous level permissions from the official An-
droid development documentation and manually match each
permission with our defined malicious behavior label to obtain
Label related dangerous permissions. Subsequently, based on
the mapping of permissions to APIs provided by PScout [45]
and other reseacher [46], the initial Label Related Sensitive
APIs can be obtained. Considering that the matching between
the permissions and the APIs provided by PScout may be
outdated, We collect the APIs and utilize ChatGPT to assist
in identifying APIs related to each of our malicious labels, thus
getting the Malicious Label. The details will be introduced in
§ IV-C.

3) Acquisition of Malicious Label: Based on the Malicious
behaviors mapped APIs and Label Related Sensitive APIs, the
following operations are performed to obtain the Malicious

172

Correct
propomon

Initial Label related
sensitive A Pls

2. Answer
Verification

Labels

§- %H@LLM

xbe
ompxr
s API-label [- Filter by
Pliabel’ < tiosicn

* (onfidence
ird\ score

are

3. Updated Label
related sensitive APIs

1. Prompt
@ design H Promth

Fig. 7: Label Related Sensitive APIs Updating

develop

Label of malware:

Malicious Subgraph: We match the API nodes in the FCG
with the APIs in the Malicious behaviors mapped APIs.
Nodes that match are considered as central nodes, and we
retrieve the central node and its first-degree adjacent nodes
to form the Malicious subgraph.

Malicious Label of Malware: We match the API nodes in
the Malicious subgraph with the APIs in the Label Related
Sensitive APIs. The corresponding labels are then assigned
as the Malicious Label of the malware.

4) Acquisition of Malware Report: As shown in Figure 6,
in the process of generating Malicious Label for malware
in AMBL, the Malware Report we finally obtained includes
various information such as function call graphs, permissions,
APIs, Intents and Malicious Label. This information can
serve as commonly used input features for ML-based Android
malware detection methods and can be directly utilized by
other classification tasks.

Permission is a security mechanism primarily used to re-
strict the usage of certain functions with restrictive capa-
bilities within applications and access between application
components.

API is the pre-defined function in the Android system,
providing the ability for applications and developers to
access a set of routines without needing to access the source
code.

Intent provides a mechanism to assist in the interaction and
communication between activities, acting as an intermediary.
Function call graph consists of nodes representing func-
tions and edges indicating the call relationships between
functions.

C. Label Related Sensitive APIs Updating

As described in § IV-B2, the initial Label Related Sensi-
tive APIs was mapped through PScout based on dangerous
permissions. However, PScout, developed 12 years ago, offers
outdated mappings that fail to cover the latest sensitive APIs.
To ensure that the Label Related Sensitive APIs encompasses
the most recent sensitive APIs, we implemented an automated
process using Large Language Models (LLMs). Our novel
feedback-based prompting method enables AMBL to effec-
tively update the Label Related Sensitive APIs, mitigating the
impact of malware feature drifts [17]. The overall process,
illustrated in Figure 7, involves three main steps: (1) Prompt
Design, (2) Answer Verification, and (3) Acquisition of the
Updated Label Related Sensitive APIs.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

Prompt template

We introduce you to 6 malicious behavior labels, which are SMS-related: ...;
Phone-related:; File-related: ...; Location-related: ...; Network-related: ...;

Overstep-related: ...; Prerequisite

Then I will provide you an [Android APIs], [corresponding description] from
official Android API documentation, and [the most relevant API] extracted from
FCGs , please help me to determine whether this API are related to the above 6

labels. Task
If so, please output which one is related to the [malicious behavior labels] and
your [confidence score] (0-100); if none of them are related, please output "Not

related ". Output Format

For example, for the API [...], its description is [...], the most relevant AP is [...] .
The corresponding output should be “[label], [confidence score]”. Example|

Please parse the following API based on the provided info: [API], [corresponding
description], [the most relevant API]. [Question

Fig. 8: Prompt Template for API Updating

1) Prompt Design: To leverage LLMs to identify whether
an input API relates to defined malicious behaviors, we
designed a detailed prompt template. This template, shown in
Figure 8, aggregates various information aspects to enhance
LLM understanding and ensure accurate labeling. The prompt
template includes:

- Prerequisite: Provides foundational information, including
malicious behavior labels and their definitions.

- Task: Instructs the LLM to determine if the given sensitive
API relates to the defined malicious behavior labels. Infor-
mation includes: API description from Android development
documentation. The most relevant API in the Function Call
Graphs (FCGs) of 1000 malicious applications.

- Output Format: Specifies that the LLM must output the
corresponding malicious behavior label and a confidence
score for its response.

- Example: Offers examples to guide the LLM in understand-
ing the requirements.

- Question: Inputs the API for the LLM to evaluate and
provide the corresponding malicious behavior label.

2) Answer Verification: Given that LLMs can sometimes
provide unreliable responses for difficult tasks [47], we imple-
mented a verification step. This process, shown by blue arrows
in Figure 7, involves: (1) Randomly selecting 100 APIs with
known labels from the initial Label Related Sensitive APIs.
(2) Constructing prompts to query the LLM. (3) Comparing
the LLM’s generated labels with the ground truth from the
initial Label Related Sensitive APIs to calculate the correct
proportion. An 81% match rate indicated that the LLM’s
results were reliable. Additionally, the average confidence
score for correctly matched APIs is 89.7, indicating that the
LLM has a high level of confidence in its judgments.

3) Acquisition of the Updated Label Related Sensitive APIs:
After confirming the credibility of LLM responses, we used
the LLM to identify malicious behavior labels for APIs, as
shown by the green arrows in Figure 7. The process includes:
(1) Conducting a frequency analysis of sensitive APIs used by
1,000 malware applications. (2) Selecting the top 500 APIs for
label identification. (3) Constructing and submitting prompts

173

N
a

4

w
= N
@ =

Violate R2

Score
»
i
o

m Violate R1

._.
Number of Label

u Correct

=
«

5
.5
4
.5
3
.5
2
.5
1
.5
0

4 5 6

behavior
(2)

1 2 3 7 8 9
Malici b

Fig. 9: Evaluation Results of (a) Correctness of Malicious
Label and (b) Validation of Dataset Quality

I 2I
0 II
] s((\,

¥ & .
F & &

& 5 &
< s L (b) o

K

¢ =

to the LLM for each API. (4) Choosing the average score
of 89.7 that matches correctly in the § IV-C2 as the critical
value. Filtering outputs by confidence scores, retaining only
those with a score not less than 89.7 to ensure reliability. (5)
This process resulted in the updated Label Related Sensitive
APIs, encompassing the latest sensitive APIs and enhancing
the detection and analysis of evolving malware behaviors.

D. Dataset

By leveraging the AMBL framework, we generated a new
dataset of malicious applications with minimal human effort
required for quality validation. Considering that commonly
used malware datasets, such as Drebin (2010-2012) and
Genome (2010-2011), are potentially outdated, we constructed
a contemporary, ready-to-use dataset of malicious applications.
This dataset includes malicious behavior labels and popular
features summarized within a Malware Report. To ensure that
the dataset reflects the current landscape of malware in the
application market, we collected the latest 1,000 malware
samples from VirusShare, with samples dated from 2022
onwards. Our dataset is publicly available to the research
community, facilitating direct utilization by machine learning-
based Android Malware Detection (AMD) research with min-
imal preprocessing effort. This accessibility aims to save time
for subsequent researchers and streamline the research process.
For more details on the dataset and to access the data, please
refer to the dataset repository.

V. EVALUATION

In this section, we validate the correctness of the Malicious
Label in describing malicious behaviors and assess the quality
of the dataset.

A. Validation #1: Malicious Label Correctness

To evaluate how effectively Malicious Label characterize
behaviors in real-world malicious code snippets, we conducted
an online survey>.

1) Survey Preparation:

Survey data: We randomly selected 10 malicious applications
from the dataset and generated malicious behavior labels using
AMBL.

2See https:/forms.gle/txdH5pfn4XjveyDJ8 for full survey questions.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

Participant Recruitment: We recruited 25 participants from
computer science-related disciplines at our university, with
the majority being graduate students (24), including 7 indi-
viduals possessing prior experience in malware analysis. The
participants’ relevant academic backgrounds and specialized
expertise contribute to the credibility and reliability of the
questionnaire data.

2) Experiment Procedures: Participants received a brief
introduction explaining the survey’s objective: to assess the
quality of the behavior labels generated by AMBL. They com-
pleted two tasks: (1) provided their educational background
and experience in malware detection and program analysis,
and (2) rated the match between the provided malicious
behaviors, corresponding Malicious Label, and related code
snippets on a scale from 1 to 5.

3) Results & Analysis: The average scores for each mali-
cious behavior are shown in Figure 9(a). The average score
for malicious behavior 1 (Downloading files from third-party
websites to the local device) was 4.55, indicating a high
accuracy of our behavior labels. Malicious behavior 2 and 6
has the lowest average score of 3.45, which we will analyze in
Appendix A.5 [32]. Except for malicious behaviors 2 and 6,
all other behaviors scored above 3.5, suggesting that the labels
generated by AMBL are generally reliable. The overall average
score for all malicious behaviors was 3.92, suggesting that our
Malicious Label system performs better than acceptable and
approaches good reliability.

B. Validation #2: Dataset Quality

To verify the credibility of the dataset, we conducted the
following validation.

1) Selection of Malicious Samples: Manually analyzing a
large number of malware samples to identify their malicious
behaviors is impractical due to the immense effort involved.
Therefore, we selected a representative subset of malware
samples. To ensure comprehensive validation, each label must
be verified by at least 10 samples. Based on this criterion,
we randomly selected 103 malicious labels of 23 malware for
detailed analysis.

2) Verification of Malicious Label for Selected Malware:
We used Dex2Jar to decompile the selected malware and
analyze the source code. We start from sensitive APIs and an-
alyze the complete attack chain of malware based on function
call relationships. After extracting the malicious behaviors,
we match them with the behavioral labels of the malware
to determine whether the assigned labels for the sample
are appropriate. We provide detailed analysis examples in
Appendix A.6 [32]. For incomplete matches, we conducted
additional analysis to determine the reasons, focusing on two
reasons: (1) The malware exhibited malicious behaviors not
specified by the labels. (2) AMBL provided extra malicious
labels without corresponding malicious behaviors.

3) Result & Analysis: Our analysis, shown in Figure 9(b),
indicates that 97 out of 103 malicious labels (94.2%) had
corresponding malicious code snippets, suggesting high reli-
ability. However, two issues were identified: Missing Labels

174

(Reason 1): Two malware samples exhibited additional ma-
licious behavior not captured by AMBL due to incomplete
malware analysis reports from AV providers. We plan to source
more comprehensive reports to enhance label accuracy. Extra
Labels (Reason 2): Four malware samples were assigned
extra labels despite not exhibiting corresponding behaviors,
often due to benign use of sensitive information by normal
package whthin repackaged malware. To address this, we will
incorporate techniques for detecting repackaged malware (such
as [48]) to reduce false positives in future work.

VI. DiscussioN

This work reveals the inadequacies of family classification
as a basis for further analysis of malware and also proposes its
own solution starting from malicious behavior labels. however,
there exists some threats that need to be discussed. Firstly,
while our work does not resolve all problems related to family
classification, we hope it encourages both academic and in-
dustrial researchers to reassess its utility. Such a reassessment
could drive the development of more robust methodologies
for Android malware analysis. Another threat to our work
lies in validating the completeness of the summarized labels.
Our work predominantly included limited researchers and
data, which may only provide insightful directions but not a
comprehensive solution. In future studies, we hope to attract
more experts in Android malware analysis to participate in
this study. Besides, our defined labels may become obsolete
with the emergence of new malicious behaviors that have not
been identified. To address this, we plan to design an open-
access platform that allows more people to regularly contribute
unlisted malicious behavior labels to maintain their relevance
and comprehensiveness.

VII. CONCLUSION

This paper presents a study that summarizes the current
issues with family definitions and introduces six malicious
behavior labels to directly indicate the malicious behavior of
malware. Then we designed the AMBL framework to automat-
ically generate malicious labels for malware, and constructed
an open-source dataset.

ACKNOWLEDGMENT
This research was funded by the National Natural Science
Foundation of China (N0.62332005).
REFERENCES

[1 Available:

—

(2024) Android and Google Play statistics.
https://www.appbrain.com/stats

(2024) MALWARE AND PUA statistics. [Online]. Available: https:
/Iportal.av-atlas.org/malware

R. Feng, S. Chen, X. Xie, G. Meng, S.-W. Lin, and Y. Liu, “A
Performance-Sensitive Malware Detection System Using Deep Learning
on Mobile Devices,” IEEE Transactions on Information Forensics and
Security, 2020.

R. Feng, S. Chen, X. Xie, L. Ma, G. Meng, Y. Liu, and S.-W. Lin,
“MobiDroid: A Performance-Sensitive Malware Detection System on
Movbile Platform,” in 2019 24th International Conference on Engineering
of Complex Computer Systems, 2019.

[Online].

~
B

[3

[t

[4

=

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

(5]

(6

—

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Feng, J. Q. Lim, S. Chen, S.-W. Lin, and Y. Liu, “SeqMobile: An
Efficient Sequence-Based Malware Detection System Using RNN on
Mobile Devices,” in 2020 25th International Conference on Engineering
of Complex Computer Systems, 2020.

S. Chen, M. Xue, L. Fan, S. Hao, L. Xu, H. Zhu, and B. Li, “Automated
poisoning attacks and defenses in malware detection systems: An
adversarial machine learning approach,” computers & security, 2018.
M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, “Android
malware familial classification and representative sample selection via
frequent subgraph analysis,” IEEE Transactions on Information Foren-
sics and Security, 2018.

Y. Bai, Z. Xing, X. Li, Z. Feng, and D. Ma, “Unsuccessful story about
few shot malware family classification and siamese network to the
rescue,” in International Conference on Software Engineering, 2020.
Y. Li, D. Yuan, T. Zhang, H. Cai, D. Lo, C. Gao, X. Luo, and H. Jiang,
“Meta-learning for multi-family android malware classification,” ACM
Transactions on Software Engineering and Methodology, 2024.

Q. Qiao, R. Feng, S. Chen, F. Zhang, and X. Li, “Multi-label classifica-
tion for android malware based on active learning,” IEEE Transactions
on Dependable and Secure Computing, 2022.

S. Li, X. Xie, Y. Lin, Y. Li, R. Feng, X. Li, W. Ge, and J. S. Dong,
“Deep learning for coverage-guided fuzzing: How far are we?” IEEE
Transactions on Dependable and Secure Computing, pp. 1-13, 2022.
B. Cheng, S. Zhao, K. Wang, M. Wang, G. Bai, R. Feng, Y. Guo, L. Ma,
and H. Wang, “Beyond fidelity: Explaining vulnerability localization of
learning-based detectors,” ACM Trans. Softw. Eng. Methodol., vol. 33,
no. 5, Jun. 2024.

H. Donggqi, W. Zhiliang, F. Ruitao, J. Minghui, C. Wenqi, W. Kai, W. Su,
Y. Jiahai, S. Xingang, Y. Xia, and L. Yang, “Rules refine the riddle:
Global explanation for deep learning-based anomaly detection in security
applications,” in Proceedings of the 31st ACM conference on Computer
and communications security, 2024, p. 95-106.

S. Li, M. Ge, R. Feng, X. Li, and K. Y. Lam, “ Automatic Detection
and Analysis towards Malicious Behavior in IoT Malware ,” in 2023
IEEE International Conference on Data Mining Workshops (ICDMW),
Los Alamitos, CA, USA, Dec. 2023, pp. 1332-1341.

S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik, “A new an-
droid malware detection approach using bayesian classification,” in
International Conference on Advanced Information Networking and
Applications, 2013.

Y. Li, R. Feng, S. Chen, Q. Guo, L. Fan, and X. Li, “Iconchecker:
Anomaly detection of icon-behaviors for android apps,” in 2021 28th
Asia-Pacific Software Engineering Conference (APSEC), 2021, pp. 202—
212.

Y. Chen, Z. Ding, and D. Wagner, “Continuous learning for android
malware detection,” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 1127-1144.

S. Wu, P. Wang, X. Li, and Y. Zhang, “Effective detection of android
malware based on the usage of data flow apis and machine learning,”
Information and software technology, 2016.

S. Liu, W. Ma, J. Wang, X. Xie, R. Feng, and Y. Liu, “Enhancing code
vulnerability detection via vulnerability-preserving data augmentation,”
in Proceedings of the 25th ACM SIGPLAN/SIGBED International Con-
ference on Languages, Compilers, and Tools for Embedded Systems,
ser. LCTES 2024. Association for Computing Machinery, 2024, p.
166-177.

X. Li, S. Liu, R. Feng, G. Meng, X. Xie, K. Chen, and Y. Liu,
“Transrepair: Context-aware program repair for compilation errors,”
in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’22. Association for
Computing Machinery, 2023.

Q. Guo, X. Li, X. Xie, S. Liu, Z. Tang, R. Feng, J. Wang, J. Ge, and
L. Bu, “Ft2ra: A fine-tuning-inspired approach to retrieval-augmented
code completion,” in Proceedings of the 33rd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, ser. ISSTA 2024.
Association for Computing Machinery, 2024, p. 313-324.

B. Wu, S. Liu, R. Feng, X. Xie, J. Siow, and S.-W. Lin, “Enhancing
security patch identification by capturing structures in commits,” /EEE
Transactions on Dependable and Secure Computing, pp. 1-15, 2022.
M. Sebastian, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool
for massive malware labeling,” in Research in Attacks, Intrusions, and
Defenses. Springer, 2016, pp. 230-253.

R. Feng, S. Li, S. Chen, M. Ge, X. Li, and X. Li, “Unmasking the
lurking: Malicious behavior detection for iot malware with multi-label

175

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

classification,” in Proceedings of the 25th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for Em-
bedded Systems, 2024, p. 95-106.

G. Meng, R. Feng, G. Bai, K. Chen, and Y. Liu, “Droidecho: An
in-depth dissection of malicious behaviors in Android applications,”
Cybersecurity, 2018.

F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero, “Finding non-
trivial malware naming inconsistencies,” in International Conference on
Information Systems Security, 2011.

(2024) Introducing Malpedia. [Online]. Available: https:/malpedia.
caad.fkie.fraunhofer.de/

(2024) Introducing CheckPoint.
checkpoint.com/

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Roziere et al., “Llama: Open and efficient foundation
language models,” arXiv preprint arXiv:2302.13971, 2023.

G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak,
L. Sifre, M. Riviere, M. S. Kale, J. Love er al., “Gemma: Open
models based on gemini research and technology,” arXiv preprint
arXiv:2403.08295, 2024.

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,”
Advances in neural information processing systems, vol. 36, 2024.
(2024) Appendixes of this work. [Online]. Available: https://sites.
google.com/view/behavior-speaks-loader/home

(2024) Introducing F-secure. [Online]. Available: https://www.f-secure.
com/en

”VirusTotal”. [Online]. Available: https://www.virustotal.com

A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, “An empirical
analysis of android banking malware,” in Protecting Mobile Networks
and Devices. Auerbach Publications, 2016, pp. 223-246.

P. Jyotiyana and S. Maheshwari, “A literature survey on malware and
online advertisement hidden hazards,” Intelligent Systems Technologies
and Applications 2016, pp. 449—460, 2016.

T.-E. Wei, A. B. Jeng, H.-M. Lee, C.-H. Chen, and C.-W. Tien, “Android
privacy,” in 2012 international conference on machine learning and
cybernetics, vol. 5. 1EEE, 2012, pp. 1830-1837.

C. Kotkar and P. Game, “Prevention mechanism for prohibiting sms
malware attack on android smartphone,” in 2015 annual IEEE India
conference (INDICON). IEEE, 2015, pp. 1-5.

K. Alfalqi, R. Alghamdi, and M. Waqdan, “Android platform malware
analysis,” International Journal of Advanced Computer Science and
Applications (IJACSA), 2015.

J. Kim, J. Nam, S. Mo, J. Park, S.-W. Lee, M. Seo, J.-W. Ha, and J. Shin,
“Sure: Summarizing retrievals using answer candidates for open-domain
qa of 1lms,” arXiv preprint arXiv:2404.13081, 2024.

(2022) Introducing ChatGPT. [Online]. Available: https://openai.com/
index/chatgpt/

C. Zhao, W. Zheng, L. Gong, M. Zhang, and C. Wang, “Quick and
accurate android malware detection based on sensitive apis,” in 2018
IEEE international conference on smart internet of things (SmartloT).
IEEE, 2018, pp. 143-143.

M. Fan, J. Liu, W. Wang, H. Li, Z. Tian, and T. Liu, “Dapasa: detecting
android piggybacked apps through sensitive subgraph analysis,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 8, pp.
1772-1785, 2017.

A. Desnos and G. Gueguen, “Androguard documentation,” Obtenido de
Androguard, 2018.

K. W. Y. Au, Y. FE Zhou, Z. Huang, and D. Lie, “Pscout: analyzing
the android permission specification,” in Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 217-
228.

C. Li, X. Chen, R. Sun, M. Xue, S. Wen, M. E. Ahmed, S. Camtepe,
and Y. Xiang, “Cross-language android permission specification,” in
Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2022, pp. 772-783.

Q. Lu, L. Zhu, X. Xu, Z. Xing, and J. Whittle, “A framework for design-
ing foundation model based systems,” arXiv preprint arXiv:2305.05352,
2023.

K. Tian, D. Yao, B. G. Ryder, G. Tan, and G. Peng, “Detection of
repackaged android malware with code-heterogeneity features,” IEEE
Transactions on Dependable and Secure Computing, vol. 17, no. 1, pp.
64-77, 2017.

[Online]. Available: https://www.

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:09:09 UTC from IEEE Xplore. Restrictions apply.

